Tips on using this search form
- All search terms are case-insensitive
- If you specify more than one search option (e.g. you search for both "Authors" and "Paper title") then the publications returned will be those that match all of your search terms
- To reset the search form, click here
- Currently displaying 21 - 40 of 580 publications
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.
ArXiv
(2024)
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting
(2024)
(doi: 10.48550/arxiv.2405.02767)
PromptSMILES: Prompting for scaffold decoration and fragment linking in chemical language models
(2024)
(doi: 10.26434/chemrxiv-2024-z5jnt)
MolScore: A scoring and evaluation framework for de novo drug design
(2024)
(doi: 10.26434/chemrxiv-2023-c4867)
PKSmart: An Open-Source Computational Model to Predict in vivo Pharmacokinetics of Small Molecules
(2024)
(doi: 10.1101/2024.02.02.578658)
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank
Journal of chemical information and modeling
(2024)
64
1172
(doi: 10.1021/acs.jcim.3c01834)
Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity.
Journal of Chemical Information and Modeling
(2024)
64
590
(doi: 10.1021/acs.jcim.3c01777)
From pixels to phenotypes: Integrating image-based profiling with cell health data as BioMorph features improves interpretability
Molecular Biology of the Cell
(2024)
35
mr2
(doi: 10.1091/mbc.E23-08-0298)
Applying atomistic neural networks to bias conformer ensembles towards bioactive-like conformations.
J Cheminform
(2023)
15
124
(doi: 10.1186/s13321-023-00794-w)
Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules
Journal of chemical theory and computation
(2023)
20
164
(doi: 10.1021/acs.jctc.3c00710)
Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules
(2023)
On the difficulty of validating molecular generative models realistically: a case study on public and proprietary data
J Cheminform
(2023)
15
112
(doi: 10.1186/s13321-023-00781-1)
ACEpotentials.jl: A Julia implementation of the atomic cluster expansion
The Journal of Chemical Physics
(2023)
159
164101
(doi: 10.1063/5.0158783)
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank.
(2023)
(doi: 10.1101/2023.10.15.562398)
Machine Learning Interatomic Potentials to Predict Bond Dissociation Energies
(2023)
(doi: 10.17863/CAM.104854)
MAVEN: compound mechanism of action analysis and visualisation using transcriptomics and compound structure data in R/Shiny.
BMC Bioinformatics
(2023)
24
344
(doi: 10.1186/s12859-023-05416-8)
ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion
(2023)
(doi: 10.48550/arxiv.2309.03161)
Editorial overview: Artificial intelligence (AI) methodology in structural biology
Current Opinion in Structural Biology
(2023)
82
102676
(doi: 10.1016/j.sbi.2023.102676)
wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows.
The Journal of Chemical Physics
(2023)
159
124801
(doi: 10.1063/5.0156845)
Improving de novo molecule generation for structure-based drug design
(2023)
(doi: 10.17863/CAM.107998)