Publications

Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules.
E Gelžinytė, M Öeren, MD Segall, G Csányi
Journal of Chemical Theory and Computation
(2023)
20
Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules
E Gelžinytė, M Öeren, MD Segall, G Csányi
(2023)
ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion
WC Witt, C van der Oord, E Gelžinytė, T Järvinen, A Ross, JP Darby, CH Ho, WJ Baldwin, M Sachs, J Kermode, N Bernstein, G Csányi, C Ortner
Journal of Chemical Physics
(2023)
159
Machine Learning Interatomic Potentials to Predict Bond Dissociation Energies
E Gelzinyte
(2023)
ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion
WC Witt, CVD Oord, E Gelžinytė, T Järvinen, A Ross, JP Darby, CH Ho, WJ Baldwin, M Sachs, J Kermode, N Bernstein, G Csányi, C Ortner
(2023)
wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows
E Gelžinytė, S Wengert, TK Stenczel, HH Heenen, K Reuter, G Csányi, N Bernstein
Journal of Chemical Physics
(2023)
159
Transferable machine learning interatomic potential for bond dissociation energy prediction of drug-like molecule
E Gelžinytė, M Öeren, MD Segall, G Csányi
(2023)
wfl Python Toolkit for Creating Machine Learning Interatomic Potentials and Related Atomistic Simulation Workflows
E Gelžinytė, S Wengert, TK Stenczel, HH Heenen, K Reuter, G Csányi, N Bernstein
(2023)
Neural Network Activation Similarity: A New Measure to Assist Decision Making in Chemical Toxicology
TEH Allen, AJ Wedlake, E Gelžinytė, C Gong, JM Goodman, S Gutsell, PJ Russell
Chemical Science
(2020)
11
Computer-Assisted Discovery of Retinoid X Receptor Modulating Natural Products and Isofunctional Mimetics
D Merk, F Grisoni, L Friedrich, E Gelzinyte, G Schneider
J Med Chem
(2018)
61